O(g) corrections to the transport coefficients of QCD

Jacopo Ghiglieri, CERN

In collaboration with Guy Moore and Derek Teaney QCD in Finite Temperature and Heavy-Ion Collisions BNL, February 14th 2017

O(g) corrections to the transport coefficients of QCD_{irector's cut}

Jacopo Ghiglieri, CERN

In collaboration with Guy Moore and Derek Teaney QCD in Finite Temperature and Heavy-Ion Collisions BNL, February 14th 2017

Overview

- Aim: compute the transport coefficients of QCD to NLO. LO is AMY Arnold Moore Yaffe 2003
- NLO means O(g) effects from the medium
- Relies on cool new light-cone techniques (much more complicated for non-relativistic or mildly relativistic degrees of freedom)

Pedagogical review of the techniques in

JG Teaney 1502.03730

Most of the ingredients (kinetic theory to NLO) in JG Moore Teaney **1509.07773** (my talk at QM15)

Motivation

- How reliable is pQCD when extrapolating to α_s =0.3?
 - For thermodynamical quantities (p, s, ...) either strict expansion in g (QCD (T) + EQCD (gT) + MQCD (g^2T) Arnold-Zhai, Braaten Nieto, etc.), or non-perturbative solution of EQCD (Kajantie Laine etc.) or resummations (HTLpt, Andersen Braaten Strickland etc.)
 - For dynamical quantities? We now have 2 contrasting examples of O(g) corrections: very large for momentum diffusion (heavy quarks Caron-Huot Moore (2007), \hat{q} Caron-Huot (2008)), reasonable (~20%) for e.m. probes (JG *et al.*, Laine, Laine Ghisoiu (2013-14))

Outline

- ✓ Introduction and motivation
- Theory overview, slightly less time-constrained*
- Results for the shear viscosity and quark number diffusion
- Conclusions
- * More details in the backup slides and in the upcoming papers
 This symbol: interesting but having to skip for lack of time

Theory overview

The AMY kinetic theory

The AMY kinetic theory

 Effective Kinetic Theory (EKT) for the phase space density of quarks and gluons

$$\left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}}\right) f(\mathbf{p}) = C^{2 \leftrightarrow 2} + C^{1 \leftrightarrow 2}$$

At leading order: elastic, number-preserving 2↔2
processes and collinear, number-changing 1↔2
processes (LPM, AMY, all that) AMY (2003)

Transport coeffs from the EKT

• To obtain the transport coefficients linearize the theory

$$f(\mathbf{p}) = f_{\mathrm{EQ}}(\mathbf{p}) + \sum_{\ell} \delta f_{\ell}(\mathbf{p}) \quad \left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}}\right) f_{\mathrm{EQ}}(\mathbf{p}, u, \beta, \mu) = C_{\mathrm{lin}}[\delta f_{\ell}]$$

- Driving term equates linearized collision operator. Since $\langle T^{i\neq j}\rangle \propto \eta$, $\langle \mathbf{J}_q\rangle = -D_q \nabla \langle n_q\rangle$ η requires $\ell=2$, D_q $\ell=1$
- Transport coefficients obtained by the kinetic thy definitions of T, J once δf_{ℓ} has been obtained. Solution easier in **quadratic form** (variational). LO η ,D~1/ g^4

$$\int_{\mathbf{p}} \delta f_{\ell}(\mathbf{p}) \left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} \right) f_{\mathrm{EQ}}(\mathbf{p}, u, \beta, \mu) = \int_{\mathbf{p}} \delta f_{\ell}(\mathbf{p}) C_{\mathrm{lin}}[\delta f_{\ell}]$$

Arnold Moore Yaffe (2003)

Reorganization

- The NLO corrections come from regions sensitive to soft gluons (no quarks in this illustration)
- Before we get there, let's have a reorganized perspective on these regions at LO
- Look at 2↔2 scattering

$$\int_{\mathbf{p}\mathbf{k}\mathbf{p}'\mathbf{k}'} \left| \mathcal{M}(\mathbf{p}, \mathbf{k}; \mathbf{p}', \mathbf{k}') \right|^{2} (2\pi)^{4} \, \delta^{(4)}(P + K - P' - K')$$

$$\times f_{\mathrm{EQ}}(p) \, f_{\mathrm{EQ}}(k) \left[1 + f_{\mathrm{EQ}}(p') \right] \left[1 + f_{\mathrm{EQ}}(k') \right]$$

$$\times \left[\chi_{\ell}(\mathbf{p}) + \chi_{\ell}(\mathbf{k}) - \chi_{\ell}(\mathbf{p}') - \chi_{\ell}(\mathbf{k}') \right]^{2}$$

$$\delta f_l(\mathbf{p}) \equiv f_{\mathrm{EQ}}(\mathbf{p})(1 + f_{\mathrm{EQ}}(\mathbf{p})) \chi_l(\mathbf{p})$$

• When Q=P'-P becomes soft there are two possibilities

for
$$\left[\chi_{\ell}(\mathbf{p}) + \chi_{\ell}(\mathbf{k}) - \chi_{\ell}(\mathbf{p}') - \chi_{\ell}(\mathbf{k}')\right]^{2} \qquad \left(\chi_{\ell}(\mathbf{p}) = f_{\ell}(\hat{\mathbf{p}})\chi(p)\right)$$

• Left: diffusion terms, p and p' strongly correlated

$$\left(\chi_{\ell}(\mathbf{p}) - \chi_{\ell}(\mathbf{p}')\right)^{2} = (\hat{\mathbf{p}} \cdot \mathbf{q})^{2} [\chi'(p)]^{2} + \frac{\ell(\ell+1)}{2} \frac{q^{2} - (\hat{\mathbf{p}} \cdot \mathbf{q})^{2}}{p^{2}} [\chi(p)]^{2}$$

identify a longitudinal and a transverse momentum broadening contribution, \hat{q}_L and \hat{q}

• When Q=P'-P becomes soft there are two possibilities

for
$$\left[\chi_{\ell}(\mathbf{p}) + \chi_{\ell}(\mathbf{k}) - \chi_{\ell}(\mathbf{p}') - \chi_{\ell}(\mathbf{k}')\right]^{2} \qquad \left(\chi_{\ell}(\mathbf{p}) = f_{\ell}(\hat{\mathbf{p}})\chi(p)\right)$$

Soft HTLresummed propagator

Previously unseen footage

• Diffusion terms: transverse becomes Euclidean

$$\hat{q}(\mu_{\perp}) = g^{2}C_{A} \int^{\mu_{\perp}} \frac{d^{2}q_{\perp}}{(2\pi)^{2}} \int \frac{dq^{+}}{2\pi} \langle F^{-\perp}(Q)F^{-}_{\perp} \rangle_{q^{-}=0}$$

$$= g^{2}C_{A}T \int^{\mu_{\perp}} \frac{d^{2}q_{\perp}}{(2\pi)^{2}} \frac{m_{D}^{2}}{q_{\perp}^{2} + m_{D}^{2}} = \frac{g^{2}C_{A}Tm_{D}^{2}}{2\pi} \ln \frac{\mu_{\perp}}{m_{D}}$$

$$F$$
Assume that Coaline Zeroland IIIII (2002). Correct Live th PDD 70 (2004)

Aurenche Gelis Zaraket JHEP0205 (2002), Caron-Huot PRD79 (2009)

• When Q=P'-P becomes soft there are two possibilities

for
$$\left[\chi_{\ell}(\mathbf{p}) + \chi_{\ell}(\mathbf{k}) - \chi_{\ell}(\mathbf{p'}) - \chi_{\ell}(\mathbf{k'})\right]^{2} \qquad \left(\chi_{\ell}(\mathbf{p}) = f_{\ell}(\hat{\mathbf{p}})\chi(p)\right)$$

Soft HTLresummed propagator

Previously unseen footage

• Diffusion terms: longitudinal with lightcone sum rule

$$\hat{q}_{L}(\mu_{\perp}) = g^{2}C_{A} \int^{\mu_{\perp}} \frac{d^{2}q_{\perp}}{(2\pi)^{2}} \int \frac{dq^{+}}{2\pi} \langle F^{-z}(Q)F^{-z} \rangle_{q^{-}=0}$$

$$= g^{2}C_{A}T \int^{\mu_{\perp}} \frac{d^{2}q_{\perp}}{(2\pi)^{2}} \frac{m_{\infty}^{2}}{q_{\perp}^{2} + m_{\infty}^{2}} = \frac{g^{2}C_{A}Tm_{\infty}^{2}}{2\pi} \ln \frac{\mu_{\perp}}{m_{\infty}}$$

$$F$$

JG Moore Teaney (2015)

• When Q=P'-P becomes soft there are two possibilities

for
$$\left[\chi_{\ell}(\mathbf{p}) + \chi_{\ell}(\mathbf{k}) - \chi_{\ell}(\mathbf{p'}) - \chi_{\ell}(\mathbf{k'})\right]^{2} \qquad \left(\chi_{\ell}(\mathbf{p}) = f_{\ell}(\hat{\mathbf{p}})\chi(p)\right)$$

Diffusion terms: easy with light-cone techniques*

$$\left. \hat{q}_L^a \right|_{\text{soft}} = \frac{g^2 C_{R_a} T m_D^2}{4\pi} \ln \frac{\sqrt{2}\mu_\perp}{m_D} \qquad \left. \hat{q}^a \right|_{\text{soft}} = \frac{g^2 C_{R_a} T m_D^2}{2\pi} \ln \frac{\mu_\perp}{m_D}$$

give rise to the leading log contribution

*Caron-Huot PRD82 (2008) JG Moore Teaney (2015)

• When Q=P'-P becomes soft there are two possibilities

for
$$\left[\chi_{\ell}(\mathbf{p}) + \chi_{\ell}(\mathbf{k}) - \chi_{\ell}(\mathbf{p}') - \chi_{\ell}(\mathbf{k}')\right]^{2} \qquad \left(\chi_{\ell}(\mathbf{p}) = f_{\ell}(\hat{\mathbf{p}})\chi(p)\right)$$

Right: cross terms, p,p' and k,k' not correlated.
 Two-point function of two uncorrelated deviations from equilibrium

(diffusion was the response of an off-eq leg to the equilibrium bath)

• When Q=P'-P becomes soft there are two possibilities

for
$$\left[\chi_{\ell}(\mathbf{p}) + \chi_{\ell}(\mathbf{k}) - \chi_{\ell}(\mathbf{p'}) - \chi_{\ell}(\mathbf{k'})\right]^{2} \qquad \left(\chi_{\ell}(\mathbf{p}) = f_{\ell}(\hat{\mathbf{p}})\chi(p)\right)$$

• Right: cross terms, p,p' and k,k' not correlated. Light-cone techniques not applicable, have to use numerical integration.

Easy at LO, where they are finite (no leading log contribution)

Reorganization

• 1↔2 processes: strictly collinear kinematics, unaffected by reorganization

Reorganization of the LO collision operator

$$\int_{\mathbf{p}} \delta f_{\ell}(\mathbf{p}) \left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} \right) f_{\mathrm{EQ}}(\mathbf{p}, u, \beta, \mu) = \int_{\mathbf{p}} \delta f_{\ell}(\mathbf{p}) \left[\mathbf{C}^{\mathrm{large}}[\mu_{\perp}] + C^{\mathrm{diff}}[\mu_{\perp}] + C^{\mathrm{cross}} + C^{\mathrm{coll}} \right]$$

Final ingredient: 2

2

2 large angle scatterings, IR-regulated to avoid the soft region

Going to NLO

- The diffusion, cross and collinear terms receive O(g) corrections
- There is a new semi-collinear region

Collinear corrections

• The differential eq. for LPM resummation gets correction from NLO $C(q_{\perp})$ and from the thermal asymptotic mass at NLO (Caron-Huot 2009)

$$C_{\text{LO}}(q_{\perp}) = \frac{g^2 C_A T m_D^2}{q_{\perp}^2 (q_{\perp}^2 + m_D^2)}$$

 $C_{\rm NLO}(q_{\perp})$ complicated but analytical (Euclidean tech) Caron-Huot PRD79 (2009), Lattice: Panero *et al.* (2013)

• Regions of overlap with the diffusion and semi-collinear regions need to be subtracted

NLO diffusion and cross

At NLO one has these types of diagrams

• For diffusion (left): application of light-cone techniques still possible, huge simplification and closed-form results Transverse (NLO \hat{q}) is finite Caron-Huot (2008) Longitudinal (NLO \hat{q}_L) is UV log-divergent JG Moore Teaney (2015)

$$\hat{q}_L(\mu_\perp)_{\text{NLO}} = g^2 C_A T \int \frac{d^2 q_\perp}{(2\pi)^2} \frac{m_\infty^2 + \delta m_\infty^2}{q_\perp^2 + m_\infty^2 + \delta m_\infty^2} \approx g^2 C_A T \int \frac{d^2 q_\perp}{(2\pi)^2} \left[\frac{m_\infty^2}{q_\perp^2 + m_\infty^2} + \frac{q_\perp^2 \delta m_\infty^2}{(q_\perp^2 + m_\infty^2)^2} \right]$$

Diffusion corrections

At NLO one has these diagrams

• For transverse: Euclidean calculation Caron-Huot PRD79 (2009)

$$\hat{q}_{\text{NLO}} = \hat{q}_{\text{LO}} + \frac{g^4 C_A^2 T^3}{32\pi^2} \frac{m_D}{T} (3\pi^2 + 10 - 4 \ln 2)$$

For longitudinal:

$$\hat{q}_{L}(\mu_{\perp})_{\text{LO}} = g^{2}C_{A}T \int \frac{d^{2}q_{\perp}}{(2\pi)^{2}} \frac{m_{\infty}^{2}}{q_{\perp}^{2} + m_{\infty}^{2}}$$

$$\hat{q}_{L}(\mu_{\perp})_{\text{NLO}} = g^{2}C_{A}T \int \frac{d^{2}q_{\perp}}{(2\pi)^{2}} \frac{m_{\infty}^{2} + \delta m_{\infty}^{2}}{q_{\perp}^{2} + m_{\infty}^{2} + \delta m_{\infty}^{2}} \approx g^{2}C_{A}T \int \frac{d^{2}q_{\perp}}{(2\pi)^{2}} \left[\frac{m_{\infty}^{2}}{q_{\perp}^{2} + m_{\infty}^{2}} + \frac{q_{\perp}^{2}\delta m_{\infty}^{2}}{(q_{\perp}^{2} + m_{\infty}^{2})^{2}} \right]$$

after collinear subtraction light-cone sum rule still sees only dispersion relation (O(g) correction). NLO still UV-log sensitive

NLO diffusion and cross

At NLO one has these types of diagrams

For cross (right): no diffusion picture = no "easy" light-cone sum rules, only way would be bruteforce HTL. Missing, but silver lining: they're finite, so just estimate the number and vary it

NLO test ansatz: LO cross x $m_D/T(\sim g)$ x arbitrary constant that we vary

$$C_{\mathrm{NLO}}^{\mathrm{cross}} = C_{\mathrm{LO}}^{\mathrm{cross}} \times \frac{m_D}{T} \times c_{\mathrm{cross}}$$

Semi-collinear processes

Seemingly different processes boiling down to wider-angle

• Evaluation: introduce "modified \hat{q} " tracking the changes in the small light-cone component p of the gluons. Can be evaluated in EQCD

"standard"
$$\hat{q} = g^2 C_A \int \frac{d^2 q_\perp}{(2\pi)^2} \int \frac{dq^+}{2\pi} \langle F^{-\perp}(Q) F^-_\perp \rangle_{q^-=0}$$
"modified"
$$\hat{q}(\delta E) = g^2 C_A \int \frac{d^2 q_\perp}{(2\pi)^2} \int \frac{dq^+}{2\pi} \langle F^{-\perp}(Q) F^-_\perp \rangle_{q^-=\delta E}$$

• Rate \propto "modified \hat{q} " x DGLAP splitting. IR log divergence makes collision operator finite at NLO

Semi-collinear processes

- Important technical detail: subtractions (no, I am not talking about first grade algebra)
- Pure O(g) semicollinear rate actually involves subtraction of collinear and hard limits ,i.e. $\hat{q}(\delta E) \hat{q}(0) \hat{q}(\delta E, m_D \to 0)$
- This makes it mostly negative: when extrapolating to larger *g* we risk a negative collision operator
- We devised a new implementation that, while equivalent at O(g), is better behaved when extrapolating due to resummations
- In a nutshell, make $C(q_{\perp})$ δE -dependent in the first-order of the LPM ladder resummation. Smoothens 1/k Bethe-Heitler IR. Implications for thermalization?

Results

Results

- Inversion of the collision operator using variational Ansatz
- At NLO just add O(g) corrections to the LO collision operator, do not treat them as perturbations in the inversion
- Kinetic theory with massless quarks still conformal to NLO
- Relate parameter $m_D/T \sim g$ to temperature through two-loop g(T) as in Laine Schröder JHEP0503 (2005)
- Degree of arbitrariness in the choice of quark mass thresholds, test several values of μ/T
- All plots are preliminary

$\eta/s(T)$ of QCD

LO results from AMY (2003)

$\eta/s(T)$ of QCD

All known NLO terms, no cross ansatz yet

$\eta/s(T)$ of QCD

• Cross ansatz introduces $O(\pm 30\%)$ uncertainty

η/s convergence

• Convergence realized at $m_D \sim 0.5T$

η/s convergence

• The ~entirety of the downward shift comes from NLO O(g) corrections to \hat{q}

D_qT(T) of QCD

Cross ansatz uncertainty much smaller (soft quarks here)

D_qT convergence

• Convergence realized again at $m_D \sim 0.5T$

Ratios

• NLO \hat{q} domination makes ratios similar

Conclusions

All those moments will (hopefully not) be lost in time

- We have computed all contributions to the NLO linearized collision operator but one (for each ℓ)
- NLO corrections are #large, η and D down by a factor of ~5 in the phenomenological region
- Convergence below $m_D \sim 0.5T$
- Second-order τ_Π will be available in the papers
 - Corrections dominated by NLO \hat{q} . Could it be that observables directly sensitive to transverse momentum broadening show bad convergence and those who are not show good convergence? Why?

#statisticswithsmallnumbers

Backup

Elastic processes

Double line: hard (one component O(T) or larger)
Id. specified with curl or arrow when needed

Boltzmann picture, loss - gain terms

$$C_{a}^{2\leftrightarrow 2}[P](\mathbf{p}) = \frac{1}{4|\mathbf{p}|\nu_{a}} \sum_{bcd} \int_{\mathbf{k}\mathbf{p}'\mathbf{k}'} \left| \mathcal{M}_{cd}^{ab} \right|^{2} (2\pi)^{4} \delta^{(4)}(P + K - P' - K') \times \left\{ P^{a}(\mathbf{p}) n^{b}(k) \left[1 \pm n^{c}(p') \right] \left[1 \pm n^{d}(k') \right] - \text{gain} \right\}$$

 Integration with bare matrix elements gives log divergences for soft intermediate states, cured by HTL resummation ⇒ nasty n-dimensional numerics?

Radiative processes

• Effective $1 \leftrightarrow 2$: $1+n \leftrightarrow 2+n$ with LPM suppression, collinear kinematics

$$C_a^{1\leftrightarrow 2}[P](\boldsymbol{p}) = \frac{(2\pi)^3}{|\boldsymbol{p}|^2 \nu_a} \left\{ \sum_{bc} \int_0^{p/2} dq \, \gamma_{bc}^a(\boldsymbol{p}; (p-q)\hat{\boldsymbol{p}}, q\hat{\boldsymbol{p}}) \left\{ P^a(\boldsymbol{p}) \left[1 \pm n^b(p-q) \right] \left[1 \pm n^c(q) \right] - \text{gain} \right\} \right.$$
$$\left. + \sum_{bc} \int_0^\infty dq \, \gamma_{ab}^c((p+q)\hat{\boldsymbol{p}}; \boldsymbol{p}, q \, \hat{\boldsymbol{p}}) \left\{ P^a(\boldsymbol{p}) \, n^b(q) \left[1 \pm n^c(p+q) \right] - \text{gain} \right\} \right\}$$

 Rates (gain and loss terms) individually quadratically IR divergent for soft gluon emission/absorption, but gainloss is finite

Transverse momentum diffusion

BDMPS-Z, Wiedemann, Casalderrey-Solana Salgado, D'Eramo Liu Rajagopal, Benzke Brambilla Escobedo Vairo

- All points at spacelike or lightlike separation, only preexisting correlations
- Soft contribution becomes Euclidean! Caron-Huot PRD79 (2008)
 - Can be "easily" computed in perturbation theory
 - Possible lattice measurements Laine Rothkopf JHEP1307
 (2013) Panero Rummukainen Schäfer 1307.5850

• For t/x_z =0: equal time Euclidean correlators.

$$G_{rr}(t=0,\mathbf{x}) = \int_{p}^{\infty} G_{E}(\omega_{n},p)e^{i\mathbf{p}\cdot\mathbf{x}}$$

• For t/x_z =0: equal time Euclidean correlators.

$$G_{rr}(t=0,\mathbf{x}) = \oint G_E(\omega_n,p)e^{i\mathbf{p}\cdot\mathbf{x}}$$

• Consider the more general case $|t/x^z| < 1$

$$G_{rr}(t, \mathbf{x}) = \int dp^{0} dp^{z} d^{2} p_{\perp} e^{i(p^{z}x^{z} + \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp} - p^{0}x^{0})} \left(\frac{1}{2} + n_{B}(p^{0})\right) (G_{R}(P) - G_{A}(P))$$

• For t/x_z =0: equal time Euclidean correlators.

$$G_{rr}(t=0,\mathbf{x}) = \oint G_E(\omega_n,p)e^{i\mathbf{p}\cdot\mathbf{x}}$$

• Consider the more general case $|t/x^z| < 1$

$$G_{rr}(t, \mathbf{x}) = \int dp^{0} dp^{z} d^{2} p_{\perp} e^{i(p^{z}x^{z} + \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp} - p^{0}x^{0})} \left(\frac{1}{2} + n_{B}(p^{0})\right) (G_{R}(P) - G_{A}(P))$$

• Change variables to $\tilde{p}^z = p^z - p^0(t/x^z)$

$$G_{rr}(t, \mathbf{x}) = \int dp^{0} d\tilde{p}^{z} d^{2} p_{\perp} e^{i(\tilde{p}^{z} x^{z} + \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp})} \left(\frac{1}{2} + n_{B}(p^{0})\right) (G_{R}(p^{0}, \mathbf{p}_{\perp}, \tilde{p}^{z} + (t/x^{z})p^{0}) - G_{A})$$

• For t/x_z =0: equal time Euclidean correlators.

$$G_{rr}(t=0,\mathbf{x}) = \oint G_E(\omega_n,p)e^{i\mathbf{p}\cdot\mathbf{x}}$$

• Consider the more general case $|t/x^z| < 1$

$$G_{rr}(t, \mathbf{x}) = \int dp^{0} dp^{z} d^{2} p_{\perp} e^{i(p^{z}x^{z} + \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp} - p^{0}x^{0})} \left(\frac{1}{2} + n_{B}(p^{0})\right) (G_{R}(P) - G_{A}(P))$$

• Change variables to $\tilde{p}^z = p^z - p^0(t/x^z)$

$$G_{rr}(t, \mathbf{x}) = \int dp^{0} d\tilde{p}^{z} d^{2} p_{\perp} e^{i(\tilde{p}^{z} x^{z} + \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp})} \left(\frac{1}{2} + n_{B}(p^{0})\right) (G_{R}(p^{0}, \mathbf{p}_{\perp}, \tilde{p}^{z} + (t/x^{z})p^{0}) - G_{A})$$

• Retarded functions are analytical in the upper plane in any timelike or lightlike variable => G_R analytical in p^0

• For t/x_z =0: equal time Euclidean correlators.

$$G_{rr}(t=0,\mathbf{x}) = \oint G_E(\omega_n,p)e^{i\mathbf{p}\cdot\mathbf{x}}$$

• Consider the more general case $|t/x^z| < 1$

$$G_{rr}(t, \mathbf{x}) = \int dp^{0} dp^{z} d^{2} p_{\perp} e^{i(p^{z}x^{z} + \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp} - p^{0}x^{0})} \left(\frac{1}{2} + n_{B}(p^{0})\right) (G_{R}(P) - G_{A}(P))$$

• Change variables to $\tilde{p}^z = p^z - p^0(t/x^z)$

$$G_{rr}(t, \mathbf{x}) = \int dp^{0} d\tilde{p}^{z} d^{2} p_{\perp} e^{i(\tilde{p}^{z} x^{z} + \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp})} \left(\frac{1}{2} + n_{B}(p^{0})\right) (G_{R}(p^{0}, \mathbf{p}_{\perp}, \tilde{p}^{z} + (t/x^{z})p^{0}) - G_{A})$$

• Retarded functions are analytical in the upper plane in any timelike or lightlike variable => G_R analytical in p^0

$$G_{rr}(t, \mathbf{x}) = T \sum_{n} \int dp^z d^2 p_{\perp} e^{i(p^z x^z + \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp})} G_E(\omega_n, p_{\perp}, p^z + i\omega_n t/x^z)$$

Caron-Huot **PRD79** (2009)

• For t/x_z =0: equal time Euclidean correlators.

$$G_{rr}(t=0,\mathbf{x}) = \oint G_E(\omega_n,p)e^{i\mathbf{p}\cdot\mathbf{x}}$$

• Consider the more general case $|t/x^z| < 1$

$$G_{rr}(t, \mathbf{x}) = \int dp^{0} dp^{z} d^{2} p_{\perp} e^{i(p^{z}x^{z} + \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp} - p^{0}x^{0})} \left(\frac{1}{2} + n_{B}(p^{0})\right) (G_{R}(P) - G_{A}(P))$$

• Change variables to $\tilde{p}^z = p^z - p^0(t/x^z)$

$$G_{rr}(t, \mathbf{x}) = \int dp^{0} d\tilde{p}^{z} d^{2} p_{\perp} e^{i(\tilde{p}^{z} x^{z} + \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp})} \left(\frac{1}{2} + n_{B}(p^{0})\right) (G_{R}(p^{0}, \mathbf{p}_{\perp}, \tilde{p}^{z} + (t/x^{z})p^{0}) - G_{A})$$

• Retarded functions are analytical in the upper plane in any timelike or lightlike variable => G_R analytical in p^0

$$G_{rr}(t,\mathbf{x}) = T \sum_{n} \int dp^z d^2p_{\perp} e^{i(p^z x^z + \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp})} G_E(\omega_n, p_{\perp}, p^z + i\omega_n t/x^z)$$

• Soft physics dominated by n=0 (and t-independent)

• For t/x_z =0: equal time Euclidean correlators.

$$G_{rr}(t=0,\mathbf{x}) = \oint G_E(\omega_n,p)e^{i\mathbf{p}\cdot\mathbf{x}}$$

• Consider the more general case $|t/x^z| < 1$

$$G_{rr}(t, \mathbf{x}) = \int dp^{0} dp^{z} d^{2} p_{\perp} e^{i(p^{z}x^{z} + \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp} - p^{0}x^{0})} \left(\frac{1}{2} + n_{B}(p^{0})\right) (G_{R}(P) - G_{A}(P))$$

• Change variables to $\tilde{p}^z = p^z - p^0(t/x^z)$

$$G_{rr}(t, \mathbf{x}) = \int dp^{0} d\tilde{p}^{z} d^{2} p_{\perp} e^{i(\tilde{p}^{z} x^{z} + \mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp})} \left(\frac{1}{2} + n_{B}(p^{0})\right) (G_{R}(p^{0}, \mathbf{p}_{\perp}, \tilde{p}^{z} + (t/x^{z})p^{0}) - G_{A})$$

• Retarded functions are analytical in the upper plane in any timelike or lightlike variable $=>G_R$ analytical in p^0

$$G_{rr}(t, \mathbf{x})_{soft} = T \int d^3p \, e^{i\mathbf{p}\cdot\mathbf{x}} \, G_E(\omega_n = 0, \mathbf{p})$$

• Soft physics dominated by n=0 (and t-independent)

At leading order

$$C(x_{\perp}) \propto T \int \frac{d^2 q_{\perp}}{(2\pi)^2} \left(1 - e^{i\mathbf{x}_{\perp} \cdot \mathbf{q}_{\perp}}\right) G_E^{++}(\omega_n = 0, q_z = 0, q_{\perp}) = T \int \frac{d^2 q_{\perp}}{(2\pi)^2} \left(1 - e^{i\mathbf{x}_{\perp} \cdot \mathbf{q}_{\perp}}\right) \left(\frac{1}{q_{\perp}^2} - \frac{1}{q_{\perp}^2 + m_D^2}\right)$$

- Agrees with the earlier sum rule in Aurenche Gelis Zaraket JHEP0205 (2002)
- At NLO: Caron-Huot **PRD79** (2009)

Field-theoretical lightcone definition (justifiable with SCET)

$$\hat{q}_L \equiv \frac{g^2}{d_R} \int_{-\infty}^{+\infty} dx^+ \text{Tr} \left\langle U(-\infty, x^+) F^{+-}(x^+) U(x^+, 0) F^{+-}(0) U(0, -\infty) \right\rangle$$

 $F^{+-}=E^z$, longitudinal Lorentz force correlator

At leading order

$$\hat{q}_L \propto \int \frac{dq^+ d^2 q_\perp}{(2\pi)^3} (q^+)^2 G_{++}^{>}(q^+, q_\perp, 0)$$

$$= \int \frac{dq^+ d^2 q_\perp}{(2\pi)^3} T q^+ (G_{++}^R(q^+, q_\perp, 0) - G^A)$$

$$\hat{q}_L \Big|_{\text{LO}} = g^2 C_R \int \frac{dq^+ d^2 q_\perp}{(2\pi)^3} T q^+ (G_R^{--}(q^+, q_\perp) - G_A^{--}(q^+, q_\perp))$$

$$q^+$$

$$-\mu^+$$

• Use analyticity to deform the contour away from the real axis and keep $1/q^+$ behaviour

$$\hat{q}_L \bigg|_{\text{LO}} = g^2 C_R T \int \frac{d^2 q_\perp}{(2\pi)^2} \frac{M_\infty^2}{q_\perp^2 + M_\infty^2}$$